Кокиль «Грибок»
Изготовление кокилей для различных сплавов
- Массивное медное основание
- Верхняя часть разрезная
- Образец в виде «грибка»
- Отливка образцов из:
чугуна, алюминия, бронз, латуней и т.п.
Для элементного анализа состава чугуна методом атомно-эмиссионной спектроскопии необходимо изготовить пробу, в которой нет частичек «свободного» углерода в форме графита.
Массивное медное основание кокиля обеспечивает высокую скорость охлаждения пробы и, как следствие, получение пробы в которой весь углерод находится в виде цементита Fe3C (белый чугун).
Верхняя часть кокиля разрезная. Для закрепления частей формы можно использовать стягивающий обруч (хомут) или струбцину.
Образец в виде «грибка» наиболее удобен для анализа чугуна спектральным методом. За «ножку» удобно держать пробу при заточке на электроточиле и она не мешает при фиксации пробы на приборе, а неотбеленный материал ножки удобно брать для сравнительного анализа другими методами.
Кокиль «Грибок» может быть включен в комплект поставки вместе с прибором, или его можно приобрести отдельно.
Особенности спектрального анализа чугунов. Полный элементный экспресс анализ чугунов, в том числе и на углерод, в процессе плавки? Да. Это возможно!
Сплавы железа с углеродом, в которых концентрация углерода превышает 2%, называются чугуном. Такие сплавы содержат как постоянные примеси, так, иногда, и легирующие элементы. К постоянным примесям относят кремний, марганец, сера, фосфор. К легирующим — никель, хром, медь, и другие.
Количественный атомно-эмиссионный анализ элементного состава чугуна производится в соответствии с ГОСТ 27611-88 (ЧУГУН Метод фотоэлектрического спектрального анализа).
Настоящий стандарт распространяется на чугун и устанавливает фотоэлектрический спектральный метод определения примесных и легирующих элементов, исключая основной легирующий элемент сплава — углерод.
ГРАДУИРОВКА СПЕКТРОМЕТРОВ ДЛЯ АНАЛИЗА ЧУГУНОВ
В большинстве комплектов современных Российских ГСО и импортных CRM, выпускаемых для градуировки спектрометров для анализа чугунов (ЧГ18-ЧГ23, ЧЛ1-Ч4, и др.), массовая доля углерода нормируется. Однако в дополнительных сведениях указывается, что стандартные образцы имеют структуру белого чугуна и приводятся данные о размерах рабочей зоны. Кроме того, в примечаниях указывается, что ввиду влияния структуры на результаты анализа чугунов, необходимо обеспечить соответствие структуры эталонов и проб, т.е. полный отбел последних.
В ГОСТ 7565-81 «ЧУГУН, СТАЛЬ И СПЛАВЫ. Метод отбора проб для определения химического состава» приводится чертеж изложниц для взятия проб чугуна (Чертежи 1 и 7). В соответствии с чертежом 7, проба должна иметь размер Ø 40 мм, толщиной 4-6 мм. Материл изложницы чугун или медь. Для чертежа 1 материал изложницы — только медь, так как образец в виде конуса более массивен. Таким образом, предлагаемые ГОСТом 7565-81 чертежи изложниц для отбора проб чугуна, предполагают высокую скорость охлаждения пробы и, как следствие, получение пробы со структурой белого чугуна.
Однако, допускается применять и другие изложницы, обеспечивающие требуемую точность результатов анализа. Наиболее удобный вид образца для анализа чугуна является образец в виде «грибка» см. рис. 1 .
За «ножку» удобно держать пробу при заточке на электроточиле и она не мешает при фиксации пробы на приборе. Кроме того, при необходимости, неотбеленный (мягкий) материал ножки удобно брать для сравнительного анализа пробы другими методами.
ОПРЕДЕЛЕНИЯ УГЛЕРОДА В ЧУГУНАХ
Для определения углерода в чугунах, нормативно-техническая документация, рекомендует использовать кулонометрический, газообъемный либо инфракрасно-абсорбционные методы. Применение указанных методов требует использования дополнительной дорогостоящей аппаратуры, квалифицированных специалистов и времени. Это удорожает анализ и делает его неэкспрессным.
Однако, экспресс-анализ элементного состава чугуна по ходу плавки (включая углерод, как основной легирующий элемент) является важнейшей задачей в металлургии.
Углерод в чугуне может находиться в различных формах и состояниях. Это определяет структуру сплава, а значит и его свойства. Чугуны в зависимости от состояния углерода разделяются на: белые, серые, высокопрочные и ковкие. Однако в реальных производственных условиях получают чугун, включающий в себя феррито-графитную и цементитную фазы. То есть углерод в таких чугунах может находиться в свободном (графит) и связанном (цементит) состояниях.
Скорость охлаждения (кристаллизации) отливки является основным фактором при получении чугуна с той или иной структурой. Чем ниже скорость охлаждения, тем больше углерода, при прочих равных условиях, может выделиться в свободном виде (графит).
СОСТОЯНИЕ УГЛЕРОДА ПРИ СПЕКТРАЛЬНОМ АНАЛИЗЕ
Состояние углерода, с точки зрения спектрального анализа, можно разделить на две основные группы. Это связанное состояние углерода в виде цементита (Fe3C), либо свободное состояние углерода в виде графита. В последнем состоянии графит в различных формах (шаровидный, пластинчатый, вермикулярный) располагается на границах зерна, определяя механические и другие свойства чугуна.
В эмиссионных спектрометрах серии ИСКРОЛАЙН используются генераторы низковольтной униполярной искры с продувкой штатива аргоном высокой чистоты. Генератор формирует серию коротких электрических импульсов с заданными параметрами. Эти импульсы «ударяют» в анализируемый образец и «выбивают» некоторое количество материала пробы. Этот материал поступает в плазму, в которой он атомизируется, его атомы возбуждаются и ионизируются. Излучение, возникающее в процессе релаксации атомов и ионов, поступает в спектрограф для последующего анализа. Количество излучения (интенсивность), его спектральные характеристики и стабильность зависят от параметров электрических импульсов генератора и физико-химических свойств анализируемого материала. Генераторы, применяемые в приборах серии ИСКРОЛАЙН, стабилизируют не только напряжение и частоту, но и энергию импульса, что делает импульсы весьма стабильными.
В связи с тем, что указанные импульсы имеют очень маленькую длительность (микросекунды), площадь воздействия единичного импульса на образец чугуна сравнима с размером зерна. Поэтому импульсы попадают как в места скопления графита, которые располагаются на границе зерен, так и в середину зерна, где находится чистый феррит.
Известно, что физические свойства феррита и графита сильно различаются. К этим свойствам относятся такие фундаментальные свойства, как температура плавления и испарения, тепло- и электропроводность, диффузионные свойства и другие. Поэтому температура плазмы, и как следствие, интенсивность спектра будет сильно отличаться. А это означает, что проводимые измерения будут некорректны.
Для того, чтобы параметры плазмы были неизменны, а измерения стабильны, требуется чтобы структура измеряемого образца чугуна была однородна. Единственно возможная однородная структура — это цементит
Для градуировки спектральных установок используют Государственные Стандартные Образцы (ГСО). Порядок применения ГСО определен ГОСТ 2761-88, НДИ МС-0003-00; МУ МО 14-1-14-90 «Система стандартных образцов химического состава материалов черной металлургии», Свердловск, 1990; МУ МО 14-1-3-90 «Аттестация нестандартизованных методик количественного анализа», Свердловск, 1990.